
AN1050/1098 1/9

APPLICATION NOTE

INPUT CAPTURE WITH ST62 16-BIT AUTO-RELOAD TIMER
by 8-bit Micro Application Team

1 INTRODUCTION

This note presents how to use the ST62 16-bit Auto-Reload Timer (ARTimer) to measure du-
rations or frequencies of an input signal. An example shows how to capture an input signal to
make an output signal with the same frequency as input signal but with a duty cycle equal to
50%.

1.1 16 BIT AUTO-RELOAD TIMER DESCRIPTION

This timer is a 16-bit downcounter timer with prescaler (see Figure 1.). It includes auto-reload
PWM, capture and compare capabil i ty with two input(CP1,CP2) and two output
pins(OVF,PWM). It is controlled by the following registers (8 bit):

– Status control registers (SCR1, SCR2, SCR3, SCR4)

– Capture register high (CPH) and low (CPL). For the total 16-bit the register is CP.

– Mask register high (MASKH) and low (MASKL). For the total 16-bit the register is MASK.

– Decremental counter register (TC with 16-bit)

– Compare register high (CMPH) and low (CMPL). For the total 16-bit the register is CMP.

– Reload/Capture register high (RLCPH) and low (RLCPL). For the total 16-bit the register is
RLCP.

1

INTRODUCTION

2/9

The prescaler ratio can be programmed to choose the timer input frequency fint(see Table 1).
Figure 1. 16-bit Auto-Reload Timer Block Diagram

SCR1

SCR2

SCR3

SCR4

8

8

8

8

16

16

16

16

CMP

MASK

RLCP

CP

Compare

Compare

TC

to 0

16

16

16

168

PSC ratio

fint

CONTROL LOGICINT

8-
B

IT
 M

C
U

 D
A

T
A

 B
U

S

B
U

S
 IN

T
E

R
F

A
C

E

16
-B

IT
 D

A
T

A
 B

U
S

CP2
CP1

OVF

PWM

fosc

3/9

INTRODUCTION

1.2 CAPTURE MODE

This can be used to measure time duration or frequencies (see Figure 2.).This mode is used
to measure the time elapsed between two edges of one or two external signal. Each edge
could be rising or falling depend on initialisation.

With the 16-bit TC downcounter and with fosc to 8Mhz, a signal of 4ms duration can be meas-
ured with a resolution of 1/32768.

Example :

Let's measure the time elapsed between two rising edges on CP2:

The 16-bit CP value contains the time between the two CP2 rising edges and will be divided
by two to be loaded in the 16-bit CMP register.

The capture mode uses the CP2 triggered restart mode with CP2 event detection
(RDSEL2=1, RDSEL1=0 of SCR2 register). It’s mean that each CP2 edge sets off the capture
of the TC value in the CP register and then reloads TC register with the RLCP value.

The CP2 interrupt is enabled (CP2IEN=1 of SCR3 register) and CMP interrupt is enabled
(CMPIEN=1 of SCR3 register) to manage the output bit PA2.

In the CP2 interrupt sub-program the output bit PA2 is set to 1. In the CMP interrupt sub-pro-
gram the output bit PA2 is set to 0.

The main program calculates the division by 2 of the captured 16-bit value and saves it in
NewCMPh and NewCMPl.

The prescaler ratio must be programmed according to the expected duration to measure. In
this example it is programmed to: prescaler ratio = 16, clock source = fosc = 8Mhz.

The period to measure must be in the range of 250µs to 133ms.

The sharing of a 16-bit data between the main program and the interrupt sub-program obliges
to disable the interruption for each handling of this data in the main program. This causes a jit-
ters of up to 30µs.

The delay between the input signal active edge and the output signal is of 36µs.

The RLCP register is load with FFFFh to avoid subtraction to calculate the delay between the
CP2 edge and the compare value reached by the TC value.
Table 1. Prescaler Programming Ratio

PSC2 PSC1 PRESCALER Ratio
0 0 Clock Disabled
0 1 1
1 0 4
1 1 16

INTRODUCTION

4/9

Figure 2. TC, CP and CMP value evolution synchronized with the input CP2.

TC register

0 t

PA2 bit
ouput

t

MASK&TC=MASK&CMP

CP value

CMP value=

CP2

t

previous CP
value divide
by 2

capture

reload

5/9

INTRODUCTION

Program example
;***

;*****************ST6230 Auto-Reload 16-bit Capture mode ******************

;***

;*** object: Give an output TTL square siqnal at the same frequency

;*** of the no symmetrical TTL input signal

;***

;*** input : TTL signal in the range of 7.5Hz to 4000Hz on CP2

;***

;*** output: TTL signal with the same frequency of CP2 but with

;*** a duty cycle of 50%. The signal has a delay of 36µs

;*** and a jitters of 30µs with a clock frequency of 8Mhz.

;***

;*** author: Jean-Luc CREBOUW

;***

;***

 .vers "st6230"

 .romsize 8

;*** data registers ***

 .input "623x.asm"

;*** data RAM ***

templ .def 084h ; low byte of the divider by two

temph .def 085h ; high byte of the divider by two

NewCMPl.def 086h ; low byte of the result divider

NewCMPh.def 087h ; high byte of the result divider

data .def 088h ; data copy of the A port

save_cpl.def 089h ; save the CP hight

save_cph.def 08ah ; save the CP low

;*************************** INITIALIZATION *********************************

.org 800h

reset

reti

;*** ART16 Initialisation ***

ldi SCR1,0F0h ; prescal by 16 to have f int =.5 Mhz

; Reload mode

; Runres

; No interrupt with overflow

; Reset mode for OVFMD

ldi SCR2,02h ; CP1 input interrupt disable

 ; CP2 triggered restart mode with CP2 event

; detection

ldi SCR3,0D0h ; CP2 polarity with rising edge

INTRODUCTION

6/9

 ; CP2 interrupt enable

 ; Compare interrupt enable

 ; Compare to zero interrupt disable

ldi SCR4,0h ; Overflow output disable

 ;PWM output disable

ldi RLCPH,0FFh ; RLCP register to FFFFh

ldi RLCPL,0FFh ;

ldi CMPH,0FFh ; CMP register to FF00h

ldi CMPL,000h ;

 ldi MASKH,0FFh ; MASK = 0FFFFh

 ldi MASKL,0FFh

;*** PortA initialisation for output bit 2 and CP2 input

ldi ddra,04h

ldi ora,04h

 clr a

 ld data,a ; data = 0

;*** GENERAL INTERRUPT ***

ldi ior,10h ;Enables all interrupts.

;***

;*****************************Main program********************************

;***********divide the CP value by two to load CMP register with **********

PULSE:

;*** read the previous capture out of interrupt to avoid save_cpl

;*** and save_cph from a different CP value

ldi ior,00h ; disables all interrupts.

 ld a,save_cpl

 ld templ,a

 ld a,save_cph

ldi ior,10h ; Enables all interrupts.

 ld temph,a

;*** divide by two temp (16-bit)

clr a

ld a,templ

rlc a

 rlc a

rlc a

 rlc a

rlc a

 rlc a

rlc a

 rlc a

ld templ,a

clr a

ld a,temph

7/9

INTRODUCTION

 rlc a

rlc a

 rlc a

rlc a

rlc a

 rlc a

rlc a

 rlc a

 ld temph,a

jrnc no_1

 ld a,templ

addi a,080h

 ld templ,a

no_1:

ld a,temph

 addi a,080h

 ld temph,a

 ld a,templ

;*** store the next CMP value out of interrupt

ldi ior,00h ; disables all interrupts.

ld NewCMPl,a

 ld a,temph

ld NewCMPh,a

ldi ior,10h ; Enables all interrupts.

jp PULSE

;**************************End of Main program****************************

;***

;**************************UART IT management*****************************

it_uart:

ld x,a ; save a

;*** if compare interrupt

jrs 5,SCR3,it_cp2

 ld a,data ; output port PA2 = 0

 ld dra,a

set 2,data ; data bit 2 = 1

res 3,SCR3 ; reset CMPFLG

ld a,x ; restore a

 reti

it_cp2:

;*** else CP2 interrupt

 ld a,data ; output port PA2 = 1

 ld dra,a

res 2,data ; data bit 2 = 0

res 5,SCR3 ; reset CP2FLG

INTRODUCTION

8/9

res 5,SCR2 ; reset CP2ERR

 ld a,CPH ; read CP register and save the 16-bit value

 ld save_cph,a ; in save_cph and save_cpl

 ld a,CPL

 ld save_cpl,a

 ld a,NewCMPh

 ld CMPH,a ; store NewCMPh and NewCMPl in CMP to have

 ld a,NewCMPl ; CMP = previous CP / 2

 ld CMPL,a

ld a,x ; restore a

reti

;***********************End of UART IT management*************************

;***

;******************** Restart and interrupt Vectors ************************

.org 0ff0h

 reti ; FF0h

 reti

 jp it_uart ; FF2h

reti ; FF4h

 reti

reti ; FF6h

 reti

.org 0ffch

nmi nop

reti

res jp reset

9/9

INTRODUCTION

"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

